Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
International IEEE/EMBS Conference on Neural Engineering, NER ; 2023-April, 2023.
Article in English | Scopus | ID: covidwho-20243641

ABSTRACT

This study proposes a graph convolutional neural networks (GCN) architecture for fusion of radiological imaging and non-imaging tabular electronic health records (EHR) for the purpose of clinical event prediction. We focused on a cohort of hospitalized patients with positive RT-PCR test for COVID-19 and developed GCN based models to predict three dependent clinical events (discharge from hospital, admission into ICU, and mortality) using demographics, billing codes for procedures and diagnoses and chest X-rays. We hypothesized that the two-fold learning opportunity provided by the GCN is ideal for fusion of imaging information and tabular data as node and edge features, respectively. Our experiments indicate the validity of our hypothesis where GCN based predictive models outperform single modality and traditional fusion models. We compared the proposed models against two variations of imaging-based models, including DenseNet-121 architecture with learnable classification layers and Random Forest classifiers using disease severity score estimated by pre-trained convolutional neural network. GCN based model outperforms both imaging-only methods. We also validated our models on an external dataset where GCN showed valuable generalization capabilities. We noticed that edge-formation function can be adapted even after training the GCN model without limiting application scope of the model. Our models take advantage of this fact for generalization to external data. © 2023 IEEE.

2.
Progress in Biomedical Optics and Imaging - Proceedings of SPIE ; 12465, 2023.
Article in English | Scopus | ID: covidwho-20234381

ABSTRACT

Although many AI-based scientific works regarding chest X-ray (CXR) interpretation focused on COVID-19 diagnosis, fewer papers focused on other relevant tasks, like severity estimation, deterioration, and prognosis. The same holds for explainable decisions to estimate COVID-19 prognosis as well. The international hackathon launched during Dubai Expo 2020, aimed at designing machine learning solutions to help physicians formulate COVID-19 patients' prognosis, was the occasion to develop a machine learning model capable of predicting such prognoses and justifying them through interpretable explanations. The large hackathon dataset comprised subjects characterized by their CXR and numerous clinical features collected during triage. To calculate the prognostic value, our model considered both patients' CXRs and clinical features. After automatic pre-processing to improve their quality, CXRs were processed by a Deep Learning model to estimate the lung compromise degree, which has been considered as an additional clinical feature. Original clinical parameters suffered from missing values that were adequately handled. We trained and evaluated multiple models to find the best one and fine-tune it before the inference process. Finally, we produced novel explanations, both visual and numerical, to justify the model predictions. Ultimately, our model processes a CXR and several clinical data to estimate a patient's prognosis related to the COVID-19 disease. It proved to be accurate and was ranked second in the final rankings with 75%, 73.9%, and 74.4% in sensitivity, specificity, and balanced accuracy, respectively. In terms of model explainability, it was ranked first since it was agreed to be the most interpretable by health professionals. © 2023 SPIE.

3.
IEEE Transactions on Mobile Computing ; 22(5):2551-2568, 2023.
Article in English | Scopus | ID: covidwho-2306810

ABSTRACT

Multi-modal sensors on mobile devices (e.g., smart watches and smartphones) have been widely used to ubiquitously perceive human mobility and body motions for understanding social interactions between people. This work investigates the correlations between the multi-modal data observed by mobile devices and social closeness among people along their trajectories. To close the gap between cyber-world data distances and physical-world social closeness, this work quantifies the cyber distances between multi-modal data. The human mobility traces and body motions are modeled as cyber signatures based on ambient Wi-Fi access points and accelerometer data observed by mobile devices that explicitly indicate the mobility similarity and movement similarity between people. To verify the merits of modeled cyber distances, we design the localization-free CybeR-physIcal Social dIStancing (CRISIS) system that detects if two persons are physically non-separate (i.e., not social distancing) due to close social interactions (e.g., taking similar mobility traces simultaneously or having a handshake with physical contact). Extensive experiments are conducted in two small-scale environments and a large-scale environment with different densities of Wi-Fi networks and diverse mobility and movement scenarios. The experimental results indicate that our approach is not affected by uncertain environmental conditions and human mobility with an overall detection accuracy of 98.41% in complex mobility scenarios. Furthermore, extensive statistical analysis based on 2-dimensional (2D) and 3-dimensional (3D) mobility datasets indicates that the proposed cyber distances are robust and well-synchronized with physical proximity levels. © 2002-2012 IEEE.

4.
16th ACM International Conference on Web Search and Data Mining, WSDM 2023 ; : 706-714, 2023.
Article in English | Scopus | ID: covidwho-2273720

ABSTRACT

Memes can be a useful way to spread information because they are funny, easy to share, and can spread quickly and reach further than other forms. With increased interest in COVID-19 vaccines, vaccination-related memes have grown in number and reach. Memes analysis can be difficult because they use sarcasm and often require contextual understanding. Previous research has shown promising results but could be improved by capturing global and local representations within memes to model contextual information. Further, the limited public availability of annotated vaccine critical memes datasets limit our ability to design computational methods to help design targeted interventions and boost vaccine uptake. To address these gaps, we present VaxMeme, which consists of 10,244 manually labelled memes. With VaxMeme, we propose a new multimodal framework designed to improve the memes' representation by learning the global and local representations of memes. The improved memes' representations are then fed to an attentive representation learning module to capture contextual information for classification using an optimised loss function. Experimental results show that our framework outperformed state-of-the-art methods with an F1-Score of 84.2%. We further analyse the transferability and generalisability of our framework and show that understanding both modalities is important to identify vaccine critical memes on Twitter. Finally, we discuss how understanding memes can be useful in designing shareable vaccination promotion, myth debunking memes and monitoring their uptake on social media platforms. © 2023 ACM.

5.
12th Hellenic Conference on Artificial Intelligence, SETN 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2053367

ABSTRACT

The recent rise of e-commerce, accelerated significantly by the covid-19 pandemic, sifted consumer behaviors and expectations towards retail and imposed enormous pressure on the areas of reliability, punctuality and expedition of goods at the last mile. This sudden attention to the last-mile leg of the freight transport, revealed the challenges of the sector, which proved to be unprepared and incapable of managing the unprecedented demand. This opened-up new opportunities for the development of innovative, technology-driven, last-mile distribution solutions that aim at efficient, cost-effective and less polluting logistics operations. This paper presents a technology-driven solution for the optimization of logistics operations and solving the same day delivery problem. The solution is being developed as part of an on-demand service for last-mile distribution, and will be applied in real-life operations in the city of Thessaloniki, Greece. © 2022 ACM.

6.
31st ACM World Wide Web Conference, WWW 2022 ; : 3623-3631, 2022.
Article in English | Scopus | ID: covidwho-1861669

ABSTRACT

This paper focuses on a critical problem of explainable multimodal COVID-19 misinformation detection where the goal is to accurately detect misleading information in multimodal COVID-19 news articles and provide the reason or evidence that can explain the detection results. Our work is motivated by the lack of judicious study of the association between different modalities (e.g., text and image) of the COVID-19 news content in current solutions. In this paper, we present a generative approach to detect multimodal COVID-19 misinformation by investigating the cross-modal association between the visual and textual content that is deeply embedded in the multimodal news content. Two critical challenges exist in developing our solution: 1) how to accurately assess the consistency between the visual and textual content of a multimodal COVID-19 news article? 2) How to effectively retrieve useful information from the unreliable user comments to explain the misinformation detection results? To address the above challenges, we develop a duo-generative explainable misinformation detection (DGExplain) framework that explicitly explores the cross-modal association between the news content in different modalities and effectively exploits user comments to detect and explain misinformation in multimodal COVID-19 news articles. We evaluate DGExplain on two real-world multimodal COVID-19 news datasets. Evaluation results demonstrate that DGExplain significantly outperforms state-of-the-art baselines in terms of the accuracy of multimodal COVID-19 misinformation detection and the explainability of detection explanations. © 2022 ACM.

7.
2021 IEEE International Conference on Big Data, Big Data 2021 ; : 4411-4420, 2021.
Article in English | Scopus | ID: covidwho-1730859

ABSTRACT

A key takeaway from the COVID-19 crisis is the need for scalable methods and systems for ingestion of big data related to the disease, such as models of the virus, health surveys, and social data, and the ability to integrate and analyze the ingested data rapidly. One specific example is the use of the Internet of Things and wearables (i.e., the Oura ring) to collect large-scale individualized data (e.g., temperature and heart rate) continuously and to create personalized baselines for detection of disease symptoms. Individualized data, when collected, has great potential to be linked with other datasets making it possible to combine individual and societal scale models for further understanding the disease. However, the volume and variability of such data require novel big data approaches to be developed as infrastructure for scalable use. This paper presents the data pipeline and big data infrastructure for the TemPredict project, which, to the best of our knowledge, is the largest public effort to gather continuous physiological data for time-series analysis. This effort unifies data ingestion with the development of a novel end-to-end cyberinfrastructure to enable the curation, cleaning, alignment, sketching, and passing of the data, in a secure manner, by the researchers making use of the ingested data for their COVID-19 detection algorithm development efforts. We present the challenges, the closed-loop data pipelines, and the secure infrastructure to support the development of time-sensitive algorithms for alerting individuals based on physiological predictors illness, enabling early intervention. © 2021 IEEE.

8.
2021 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2021 ; : 779-784, 2021.
Article in English | Scopus | ID: covidwho-1722863

ABSTRACT

With the current raging spread of the COVID19, early forecasting of the future epidemic trend is of great significance to public health security. The COVID-19 is virulent and spreads widely. An outbreak in one region often triggers the spread of others, and regions with relatively close association would show a strong correlation in the spread of the epidemic. In the real world, many factors affect the spread of the outbreak between regions. These factors exist in the form of multimodal data, such as the time-series data of the epidemic, the geographic relationship, and the strength of social contacts between regions. However, most of the current work only uses historical epidemic data or single-modal geographic location data to forecast the spread of the epidemic, ignoring the correlation and complementarity in multi-modal data and its impact on the disease spread between regions. In this paper, we propose a Multimodal InformatioN fusion COVID-19 Epidemic forecasting model (MINE). It fuses inter-regional and intra-regional multi-modal information to capture the temporal and spatial relevance of the COVID-19 spread in different regions. Extensive experimental results show that the proposed method achieves the best results compared to state-of-art methods on benchmark datasets. © 2021 IEEE.

9.
13th IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2021 ; : 31-38, 2021.
Article in English | Scopus | ID: covidwho-1707924

ABSTRACT

The outbreak of COVID-19 has resulted in an "infodemic"that has encouraged the propagation of misinformation about COVID-19 and cure methods which, in turn, could negatively affect the adoption of recommended public health measures in the larger population. In this paper, we provide a new multimodal (consisting of images, text and temporal information) labeled dataset containing news articles and tweets on the COVID-19 vaccine. We collected 2,593 news articles from 80 publishers for one year between Feb 16th 2020 to May 8th 2021 and 24184 Twitter posts (collected between April 17th 2021 to May 8th 2021). We combine ratings from two news media ranking sites: Medias Bias Chart and Media Bias/Fact Check (MBFC) to classify the news dataset into two levels of credibility: reliable and unreliable. The combination of two filters allows for higher precision of labeling. We also propose a stance detection mechanism to annotate tweets into three levels of credibility: reliable, unreliable and inconclusive. We provide several statistics as well as other analytics like, publisher distribution, publication date distribution, topic analysis, etc. We also provide a novel architecture that classifies the news data into misinformation or truth to provide a baseline performance for this dataset. We find that the proposed architecture has an F-Score of 0.919 and accuracy of 0.882 for fake news detection. Furthermore, we provide benchmark performance for misinformation detection on tweet dataset. This new multimodal dataset can be used in research on COVID-19 vaccine, including misinformation detection, influence of fake COVID-19 vaccine information, etc. © 2021 ACM.

10.
IEEE Internet Computing ; 26(1):60-67, 2022.
Article in English | Scopus | ID: covidwho-1704110

ABSTRACT

The motivation of this work is to build a multimodal-based COVID-19 pandemic forecasting platform for a large-scale academic institution to minimize the impact of COVID-19 after resuming academic activities. The design of this multimodality work is steered by video, audio, and tweets. Before conducting COVID-19 prediction, we first trained diverse models, including traditional machine learning models (e.g., Naive Bayes, support vector machine, and TF-IDF) and deep learning models [e.g., long short-term memory (LSTM), MobileNetV2, and SSD], to extract meaningful information from video, audio, and tweets by 1) detecting and counting face masks, 2) detecting and counting cough for potential infected cases, and 3) conducting sentiment analysis based on COVID-19-related tweets. Finally, we fed the multimodal analysis results together with daily confirmed cases data and social distancing metrics into the LSTM model to predict the daily increase rate of confirmed cases for the next week. Important observations with supporting evidence are presented. © 1997-2012 IEEE.

SELECTION OF CITATIONS
SEARCH DETAIL